
Diagrama de classes (Domínio)

1

Métodos de Desenvolvimento de Software
(MDS)

2014/2015

Classes

 Describes a set of objects that share the same
attributes, operations, associations, and semantics.

Name
Attributes
Operations

2

Name of the class

 Identity
 Noun – Domain vocabulary

 Simple Name
 Name of the package followed by

the name of the class - pth
(Staff::Employee);

 Different Classes with the same
names only possible if in different
packages

Employee

name: string
address: string
dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept
manager: Employee
salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()
leave ()
retire ()
changeDetails ()

Employee

name: string
address: string
dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept
manager: Employee
salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()
leave ()
retire ()
changeDetails ()

Staff

Package

What do they
represent?
(design class!)

3

Attributes

 Property of a class
 noun

 Describes a set of
values that is part of
an instance

Hidden operations

4

Operations

 Abstract something
the object can realize
 Described with a verb

to represent the class
behaviour

 Shared by all objects
from that class

Employee

name: string
address: string
dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept
manager: Employee
salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()
leave ()
retire ()
changeDetails ()

Employee

name: string
address: string
dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept
manager: Employee
salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()
leave ()
retire ()
changeDetails ()

Hidden attibutes

5

Taxonomy of the operations

 Constructors
 Create a new

object(allocate
memory space for an
object)

 Selectors
 Return a value

(contained or referred
by an object)

 Modifiers
 Provoke change

 State change might
refer to change one or
more attributes

 Destructors
 Destroy the object

(free memory)

6

Well-Formed Class

 Represents an abstraction of part of the problem
 Encapsulates a set of well defined responsabilities
 Offers a clear separation between specification and

implementation
 And between what is visible and hidden

7

Domain Class Diagram

 Contains the set of base classes of the
problem(classes of type entity)

 This diagram will be later extended to contemplate
other kinds of classes and dependencies between
them

8

Techniques for identifying classes

 Extract names (nouns)
 Good for identifying classes
 Bad for identifying their requirements (characteristics

and relations)

 Identify responsabilities
 Demands for good knowledge of the domain

9

Name extraction

 Example:
 The clients of a given bank can retrieve and credit money amounts

in their accounts, or ask for the current balance. These operations
are completed at the atm or at the counter. The transactions can
be done by cheque, direct payment, or by atm with a card. There
are two types of accounts: checking account and savings account.
The savings account gives interests and can not be accessed by atm.

 Class candidates: client, bank, amount, account, balance, atm,
counter, cheque, direct payment, card, checking account,
savings account, interests
 Nouns... almost all, ...

 What is kept in the final list?

10

Identifyng CRC – Class, Responsabilities
and Collaborations

 A responsability is a contract of a given class

 Steps
 Identify sets of classes that cooperate to achieve a specific

behaviour

 Identify the responsabilities and operations and attributes that
each class shall contain to carry its own responsabilities

 Divide classes with too many responsabilities or join classes
that are too simple

 Sources
 Problem statement, Use Case Diagrams and its Scenarios,

Activities Diagrams

11

Identify CRC (cont.)

 Responsability: is a contract or a mission of the
class.

Ex.: TemperatureSensor class is responsible for measuring the
temperature and activate the alarm if it reaches a given
threshold

CRC (Class Responsibility Card):

Class Name Temperature
Sensor

Responsability Colaborators
readTemperature() Alarm
Temperature

12

Generalization and Inheritance

 Classes can be organized hierarchicaly where the
superclass is the generalization of one or more
classes (subclasses)

 A subclass Inherits the attributes and operations of
the superclass and can add more properties. (and
also inherits the dependencies!)

 Generalization in UML is implemented as
inheritance in OOP

14

Inheritance: the substitution principle

 In object-oriented programming, the Liskov substitution principle
is a particular definition of subtype that was introduced by
Barbara Liskov and Jeannette Wing in a 1993 paper entitled
Family Values: A Behavioral Notion of Subtyping [1]. (It is not the
only definition; see datatype.)

 The principle was formulated succinctly [2] as follows:
 Let q(x) be a property provable about objects x of type T. Then q(y)

should be true for objects y of type S where S is a subtype of T.

 Thus, Liskov and Wing's notion of "subtype" is based on the
notion of substitutability; that is, if S is a subtype of T, then
objects of type T in a program may be replaced with objects of
type S without altering any of the desirable properties of that
program (e.g., correctness).

15

Generalization and Inheritance

 Advantages of Inheritance
 Abstraction mechanism/ classify entities
 Mechanism for reuse

 Problems
 We can only understand classes if we know their

superclasses
 Sometimes the inheritance graph is not compatible

with efficiency

16

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Subtype
http://en.wikipedia.org/wiki/Barbara_Liskov
http://en.wikipedia.org/wiki/Barbara_Liskov
http://en.wikipedia.org/w/index.php?title=Jeannette_Wing&action=edit
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Datatype
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Substitutability
http://en.wikipedia.org/wiki/Correctness

Class hierarchy in a Library System

Catalogue number
Acquisition date
Cost
Type
Status
Number of copies

Library item

Acquire ()
Catalogue ()
Dispose ()
Issue ()
Return ()

Author
Edition
Publication date
ISBN

Book

Year
Issue

Magazine

Director
Date of release
Distributor

Film

Version
Platform

Computer
program

Title
Publisher

Published item

Title
Medium

Recorded item

Comments?
What do they represent?

17

Example
18

Abstract Classes

 When the superclass was created to factorize
common properties to a set of classes of the same
type, but contain one or more abstract operations
(without implementation)

 The Abstract Classes are only used for class
inheritance

 Represented by their names in italic, or with the
stereotype <<abstract>>, or tagged value
{abstract}

 Abstract classes can not be instantiated

19

Example of an abstract class

20

Multiple inheritance

 A class can inherit
attributes and operations
of several superclasses

 Can lead to conflicts
when the operations of
different superclasses
have the same name (and
do different things)

 The hierarchy is more
complex to understand

Tapes

Talking book

Author
Edition
Publication date
ISBN

Book

Speaker
Duration
Recording date

Voice recording

21

Dependency

 It is a relationship that determines whether if a
change in the specification of a class can affect
another class, but not necessarily the opposite

22

+defineAlarm(in t : Temperature)

TemperatureSensor Temperature

Associations in UML

 Objects of a class are linked to objects from another
class(es)

 Must have a name

 Role: When a class is in an association it must play a
specific role

 Multiplicity: the specification of the nº of elements that
a set have
 Eg.: 1..*, *, 0..1, 3..9, 3..*, etc.

 Navegation: shows how from a class instance we can
access to one or more instances of another class

23

Associations
24

worksFor

Person +employee

1..*

+employer

*

Company

+worker

*

+supervisor 1

MDS 2011/2012 - M. Goulão

25

Roles
26

Ternary Association
27

Associations with restrictions
28

Class Diagrams: example
29

Specialization of associations

CustomerCustomer AccountAccount

owner
0..1

accounts

*

Corporate
Customer
Corporate
Customer

Private
Customer
Private
Customer

Corporate
Account
Corporate
Account

Private
Account
Private
Account

accounts
0..5
{subsets
accounts}

owner
1
{subsets
owner}

accounts
*
{subsets
accounts}

company
1
{subsets
owner}

30

Association class

 Happens when the association has its own properties

31

Person Company

salary
dateHired

Job

1..*

+employer

*

+employee

Association Class(2)
32

Aggregation

 Shows how the classes are
composed by other classes

 “is part-of” Association

 Transitive

 Asssymetric (in reflexive
aggregations)

33

In contrast with association

Association Class
35

Composition

 A strong type of aggregation:
 Strong presence of the part with respect to the whole
 The parts can not exist without the whole
 Composite aggregation is a strong form of aggregation

that requires a part instance be included in at most
one composite at a time

36

Company Department

1 *

Composition

Parts can only belong to a composite at a given time
The composite is responsible for the creation and deletion
The composite can release parts as long as the responsability is assumed by
another object

Aggregation and Composition
38

	Slide 1
	Classes
	Name of the classe
	Attributes
	Operations
	Taxonomy of the operations
	Well-Formed Classe
	Domain Class Diagram
	Techniques for identifying classes
	Name extraction
	Identificação de responsabilidades
	Identificação de responsabilidades (cont.)
	Generalization and Inheritance
	Inheritance: the substitution principle
	Generalization and Inheritance
	Class hierarchy in a Library System
	Example
	Abstract Classes
	Example of an abstract class
	Multiple inheritance
	Dependency
	Associations in UML
	Associations
	Slide 25
	Roles
	Ternary Association
	Associations with restrictions
	Class Diagrams: example
	Specialization of associations
	Association class
	Association Class(2)
	Aggregation
	Slide 34
	Composition
	Slide 37
	Agregation and Composition

